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The Ag to O distances are 2.72 (0(4O)) and 2.98 A 
(0(39)). The closest approach between the toxin and 
the Ag is the 2.42 A distance to 0(21). The distance 
from the water of crystallization (0(41)) to the Ag is 
2.61 A and between 0(41) and 0(33) of the toxin the 
distance is 3.01 A. The coordination about Ag is ap
proximately octahedral. There are no other abnor
mally short intermolecular contacts in the crystal struc
ture.14 

After these studies had been completed identity of 
the toxin with cytochalasin E6 was established by com
parison of melting point and mixture melting point, ir 
and mass spectra, and optical rotations.16 The pre
viously proposed structure of cytochalasin E therefore 

C7H7 

D 

is incorrect and has to be replaced by 1. Acid-cat
alyzed isomerization to compounds with part struc
tures D and E is now unexceptional. By analogy 
cytochalasin F6 has structure 2. 

Cytochalasin E killed rats within a few hours after 
dosing, the LD50 value being 2.6 or 9.1 mg/kg body 
weight after intraperitoneal or oral administration of a 
single dose. Death was due to circulatory collapse 
caused by massive extravascular effusion of plasma. 
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Chromic Acid Oxidation of Cyclopropanols 

Sir? 
In all previously investigated chromic acid oxida

tions of secondary alcohols, the chromium(VI) oxida
tion step yields the corresponding ketone.1 The 
rate-limiting step in these oxidations is the breaking 
of the a-carbon-hydrogen bond. Strained alcohols, 
like cyclobutanol or 7-norbornanol, form no exception 
to this rule,2-3 although they are very prone to undergo 
a ring-opening reaction under carbon-carbon bond 
cleavage with one-electron oxidants like chromium-
(IV),2 cerium(IV),4 vanadium(V),5 or manganese-
(HI).5 

In this communication we wish to report the strik
ingly different behavior of cyclopropanols.6 We have 
found that cyclopropanol reacts with chromic acid 
about 2000 times faster than typical secondary alco
hols (Table I) to yield /3-hydroxypropionaldehyde.7'8 

The oxidation product of 1-phenylcyclopropanol, 
/3-hydroxyethyl phenyl ketone, isolated directly by 
extraction and column chromotography accounted 
for 73% of the isolated product (43% yield): ir 
(CCl4) 3480 (broad), 1680 cm-1; nmr (CCl4) S 7.90 
(m, 2), 7.44 (m, 3), 3.90 (t, / = 5 Hz, 2), 3.10 (t, J 
= 5 Hz, 2), and 2.54 (s, 1); mass spectrum (70 eV) 
m / e l 3 2 ( P - H2O), 105,77. 

The cyclopropane ring itself is rather unreactive 
toward chromic acid, as is clearly indicated by the low 
reactivity of cyclopropylcarbinol, methyl cyclopropyl 
ether, and 1,2,2-trimethylcyclopropyl acetate. 

Tertiary cyclopropanols are more reactive than the 
corresponding secondary cyclopropanols. This en
hanced reactivity is in sharp contrast with the very 
low reactivity of other9'10 tertiary alcohols. 11~li 

The reactivity of both secondary and tertiary cyclo
propanols is greatly increased by substitution in the 
ring; 1,2,2,3,3-pentamethylcyclopropanol is about 6 
X 106 times more reactive than isopropyl alcohol 
and is, with respect to chromic acid oxidation, the most 
reactive organic compound known. 

The mechanism of the reaction can best be under
stood in terms of a rate-limiting oxidative decomposi
tion of a chromic acid ester of the alcohol (Scheme I). 
The driving force for the reaction is the relief of the 

(1) For a review of this subject, see K. B. Wiberg, "Oxidation in 
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oxidation; it therefore must be formed by dehydration of the /3-hy
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drazine. The same mixture of dinitrophenylhydrazones is obtained 
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tained by acid catalyzed hydration of acrolein.» 
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acid concentrations) represents the only previously recorded exception 
to this rule. 
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Table I. Chromic Acid Oxidation Rates" of Cyclopropanols 
and Related Compounds at 25° 

Substrate k, M-1 sec"1 

pH 1.2 (6.2 X 10~! MHaO4) 
K. OH 

X H 0.36 

x: 
x™ 

><r 
(CH3XCHOH 

CH2OH 
LX.H 

CfT 

rf°; 

2.3 

0.74 

<io-B 

0.69 X 10-« 

1.93 X 10-« 

1.41 X 10"4 

1.83 X 10"« 

k rel 

1.0 

6.4 

2.1 

<3 X 10-* 

1.9 X 10"4 

5.4 X 10"« 

3.9 X 10-« 

5.1 X 10"« 

p H 3.1 ( C H 3 C O s H - C H 3 C O j N a buffer) 

x°" 
x : 

lx0 H 

CH3 

H 3 C -
H 3 C -

OH 
^ H 

CH3 

CH3 

H 3 C -
H 3 C - ^ C H 5 

CH3 

OCOCH3 

H3C-P^CH3 

CH3 

1.42 X 10-* 

2.20 X 10"« 

11.1 

8.2 

15.9 

0 

1.0 

1.6 

780 

570 

1120 

0 

« Rates were determined spectrophotometrically at the absorp
tion maximum for chromic acid (350 nm) under pseudo-first-order 
conditioning. AU alcohols give good straight line plots. 
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ring strain. The reaction is further accelerated by 
substituents stabilizing the incipient carbonium ion14 

and carbonyl group. 

(14) We assume that the formation of the carbon-oxygen bond occurs 
at least to some extent synchronously with the ring cleavage reaction. 
However, the strong rate-accelerating effect of /3 substituents indicates 
that a positive charge does develop on the /3-carbon in the transition 
state of the oxidative decomposition. 
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A Quantitative Account of Spiroconjugation1 

Sir: 

Recently we were able to detect spiroconjugation23 

by photoelectron spectroscopy in the symmetric spirans 
9,9'-spirobifluorene (I)4 and 9,9'-spirobi(9-silafluorene) 
(2)4 and the nonspiro compounds tetravinylmethane 
(3)5 and tetravinylsilane (4).6,6 Here we report the 

(D 

C(CH=CH2I4 

(3) 

(2) 

Si(CH = CH2I4 

(4) 

(5) (6) 

detection of spiroconjugation in the newly synthesized78 

dissymmetric spiran l,l'-spirobiindene (5) and present 
a linear correlation between measured and calculated 
spiro splittings. 

Figure 1 shows a section of the photoelectron (pe) 
spectrum of 5. In the corresponding range, the pe 
spectrum9 of indene exhibits three bands which were 
assigned to ionizations from the highest three x molec
ular orbitals (MO's) (Tr1 = 8.13 eV, TT2 = 8.95, and x3 

= 10.29). The comparison of both spectra reveals that 
each of the three bands in the spectrum of indene is 
split into two bands (xi = 7.80 eV, TT2 = 8.37, splitting 
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